| Question | | Answer | Marks | Guidance | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | (i) | | $y^{\prime}=1+8 x^{-3}$
 $y^{\prime \prime}=-24 x^{-4}$ oe | M2
 A1 | M1 for just $8 x^{-3}$ or $1-8 x^{-3}$ |
| [3] | | | | | |

Question		Answer	Marks	Guidance	
2	(i)	$\begin{aligned} & 3 x^{2}-6 x-22 \\ & \text { their } y^{\prime}=0 \text { soi } \\ & 3.89 \\ & -1.89 \end{aligned}$	M1 A1 A1 [4]	condone one incorrect term, but must be three terms at least one term correct in their y^{\prime} if A0A0, SC1 for $\frac{3 \pm 5 \sqrt{3}}{3}$ or $1 \pm 5 / \sqrt{3}$ or better, or both decimal answers given to a different accuracy or from truncation	condone " $y=$ " may be implied by use of eg quadratic formula, completing square, attempt to factorise $3.886751346 \text { and }-1.886751346$
2	(ii)	$\begin{aligned} & x^{3}-3 x^{2}-22 x+24=6 x+24 \\ & x^{3}-3 x^{2}-28 x[=0] \end{aligned}$ other point when $x=7$ isw	M1 M1 A1 [3]	may be implied by $x^{3}-3 x^{2}-28 x[=0]$ may be implied by $x^{2}-3 x-28[=0]$ dependent on award of both \mathbf{M} marks	ignore other values of x
2	(iii)	$\begin{aligned} & \mathrm{F}[x]=\frac{x^{4}}{4}-\frac{3 x^{3}}{3}-\frac{22 x^{2}}{2}+24 x \\ & \mathrm{~F}[0]-\mathrm{F}[-4] \\ & \text { area of triangle }=48 \\ & \text { area required }=96 \text { from fully correct working } \end{aligned}$	M1* M1dep B1 A1 [4]	allow for three terms correct; condone $+c$ allow $0-\mathrm{F}[-4]$, condone $-\mathrm{F}[-4]$, but do not allow $\mathrm{F}[-4]$ only A0 for - 96, ignore units,	alternative method M1 $\left.\mathrm{fft}\left(x^{3}-3 x^{2}-22 x+24\right)-(6 x+24)\right) d$ may be implied by $2^{\text {nd }} \mathbf{M 1}$ $\mathbf{M 1}$ * for $\mathrm{F}[x]=\frac{x^{4}}{4}-\frac{3 x^{3}}{3}-\frac{28 x^{2}}{2}$ condone one error in integration M1dep for F[0] - F[-4] no marks for 96 unsupported

3	(i) $200-2 \pi r^{2}=2 \pi r h$ $h=\frac{200-2 \pi r^{2}}{2 \pi r}$ o.e. substitution of correct h into $V=\pi r^{2} h$ $V=100 r-\pi r^{3}$ convincingly obtained	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 100=\pi r^{2}+\pi r h \\ & 100 r=\pi r^{3}+\pi r^{2} h \\ & 100 r=\pi r^{3}+V \\ & V=100 r-\pi r^{3} \end{aligned}$ or M1 for $h=\frac{V}{\pi r^{2}}$ M1 for $200=2 \pi r^{2}+2 \pi r \times \frac{V}{\pi r^{2}}$ M1 for $200=2 \pi r^{2}+2 \frac{V}{r}$ A1 for $V=100 r-\pi r^{3}$ convincingly obtained	sc3 for complete argument working backwards: $\begin{aligned} & V=100 r-\pi r^{3} \\ & \pi r^{2} h=100 r-\pi r^{3} \\ & \pi r h=100-\pi r^{2} \\ & 100=\pi r h+\pi r^{2} \\ & 200=A=2 \pi r h+2 \pi r^{2} \end{aligned}$ sc0 if argument is incomplete
3	$\begin{aligned} & \text { (ii) } \frac{d V}{d r}=100-3 \pi r^{2} \\ & \frac{d^{2} V}{d r^{2}}=-6 \pi r \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for each term	allow 9.42(....) r^{2} or better if decimalised $-18.8(\ldots) r$ or better if decimalised

3	$\begin{aligned} & \text { (iii) their } \frac{d V}{d r}=0 \text { s.o.i. } \\ & r=3.26 \text { c.a.o. } \\ & V=217 \text { c.a.o. } \end{aligned}$	M1 A2 A1	must contain r as the only variable A1 for $r=(\pm) \sqrt{\frac{100}{3 \pi}}$; may be implied by $3.25 \ldots$ deduct 1 mark only in this part if answers not given to 3 sf,	there must be evidence of use of calculus

$\mathbf{4}$ (i)	$3 x^{2}-12 x-15$	$\mathbf{2}$	M1 if one term incorrect or an extra term is included.

4 (ii)	Their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ s.o.i.	M1	
$x=5$			
$x=-1$	B1		

$\mathbf{5}$	$y^{\prime}=3 x^{2}-12 x-15$ use of $y^{\prime}=0$, s.o.i. ft $x=5,-1$ c.a.o. $x<-1$ or $x>5$ f.t.	M1	for two terms correct	
		A1		
	A1		5	

