Question		on	Answer	Marks	Guidanc	e
1	(i)		$y' = 1 + 8x^{-3}$	M2	M1 for just $8x^{-3}$ or $1 - 8x^{-3}$	
			$y'' = -24x^{-4}$ oe	A1		but not just $\frac{-24}{-24}$ as AG
						x^4 x^4
				[3]		
1	(ii)		their $y' = 0$ soi	M1		
			x = -2	A1	A0 if more than one <i>x</i> -value	x = -2 must have been correctly obtained for all marks after first M1
			y = -3	A1	A0 if more than one <i>y</i> -value	
			substitution of $x = -2$: $\frac{-24}{(-2)^4}$	M1	or considering signs of gradient either side of -2 with negative <i>x</i> -values	condone any bracket error
			< 0 or = -1.5 oe correctly obtained isw	A1	signs for gradients identified to verify maximum	must follow from M1 A1 A0 M1 or better
				[5]		
1	(iii)		y = -5 soi	B1		
			substitution of $x = -1$ in their y'	M1	may be implied by -7	
			grad normal = $^{-1}/_{\text{their}-7}$	M1*	may be implied by eg $1/7$	
			$y - \text{their}(-5) = \text{their}^{-1}/_{7}(x1)$	M1dep*	or their $(-5) = \text{their } {}^{1}/_{7} \times (-1) + c$	
			-x + 7y + 34 = 0 oe	A1	allow eg $y - \frac{1}{7}x + \frac{34}{7} = 0$	must see = 0 do not allow eg $y = \frac{x}{7} - \frac{34}{7}$
				[5]		

Question		n	Answer	Marks	Guidance		
2	2 (i)		$3x^2 - 6x - 22$	M1	condone one incorrect term, but must be three terms	condone "y ="	
			their $y' = 0$ soi	M1	at least one term correct in their y'	may be implied by use of eg quadratic formula, completing square, attempt to factorise	
			3.89 -1.89	A1 A1	if A0A0 , SC1 for $\frac{3\pm 5\sqrt{3}}{3}$ or $1\pm \frac{5}{\sqrt{3}}$ or		
				[4]	better, or both decimal answers given to a different accuracy or from truncation	3.886751346 and -1.886751346	
2	(ii)		$x^{3} - 3x^{2} - 22x + 24 = 6x + 24$ $x^{3} - 3x^{2} - 28x [= 0]$	M1 M1	may be implied by $x^3 - 3x^2 - 28x$ [= 0] may be implied by $x^2 - 3x - 28$ [= 0]		
			other point when $x = 7$ isw	A1 [3]	dependent on award of both M marks	ignore other values of <i>x</i>	
2	(iii)		$F[x] = \frac{x^4}{4} - \frac{3x^3}{3} - \frac{22x^2}{2} + 24x$	M1*	allow for three terms correct; condone $+ c$	alternative method M1 for $(x^3 - 3x^2 - 22x + 24) - (6x + 24))dx$ may be implied by 2^{nd} M1	
			F[0] – F[–4]	M1dep	allow 0 – F[-4], condone – F[-4], but do not allow F[-4] only	M1* for F[x] = $\frac{x^4}{4} - \frac{3x^3}{3} - \frac{28x^2}{2}$ condone one error in integration	
			area of triangle $= 48$	B 1		M1dep for F[0] – F[–4]	
			area required = 96 from fully correct working	A1 [4]	A0 for – 96, ignore units,	no marks for 96 unsupported	

3	(i) $200 - 2\pi r^2 = 2\pi rh$	M1	$100 = \pi r^2 + \pi r h$	sc3 for complete argument working backwards:
	$200-2\pi r^2$			$V = 100r - \pi r^3$
	$h = \frac{2\pi r}{2\pi r}$ o.e.	M1	$100r = \pi r^3 + \pi r^2 h$	$\pi r^2 h = 100r - \pi r^3$
			2	$\pi rh = 100 - \pi r^2$
	substitution of correct h into $V = \pi r^2 h$	M1	$100r = \pi r^3 + V$	$100 = \pi r h + \pi r^2$
	2		2	$200 = A = 2\pi r h + 2\pi r^2$
	$V = 100r - \pi r^3$ convincingly obtained	A1	$V = 100r - \pi r^3$	
				sc0 if argument is incomplete
			or	
			M1 for $h = \frac{V}{\pi r^2}$	
			M1 for $200 = 2\pi r^2 + 2\pi r \times \frac{V}{\pi r^2}$	
			M1 for $200 = 2\pi r^2 + 2\frac{V}{r}$	
			A1 for $V = 100r - \pi r^3$ convincingly	
			obtained	
3	(ii) $\frac{dV}{dr} = 100 - 3\pi r^2$	B2	B1 for each term	allow 9.42() r^2 or better if decimalised
	$\frac{d^2V}{dt} = -6\pi r$	B1		-18.8() r or better if decimalised
	dr^2	21		
3	(iii) their $\frac{dV}{dr} = 0$ s.o.i.	M1	must contain r as the only variable	
	r = 3.26 c a 0	A2	A1 for $r = (\pm) \sqrt{\frac{100}{2}}$; may be implied	
	· - 5.20 0.0.0.		$\sqrt{3\pi}$	
			by 3.25	
	V = 217 c.a.o.	A1	deduct 1 mark only in this part if answers not given to 3 sf,	there must be evidence of use of calculus
L	ļ	ļ	ļ	ļ

4	(i)	$3x^2 - 12x - 15$	2	M1 if one term incorrect or an extra term is included.
1	(ii)	- , dy , .	M1	
4	(II)	Their $\frac{dy}{dx} = 0$ s.o.i.	IVII	
		<i>x</i> = 5	B1	
		<i>x</i> = -1	B1	

5	$y' = 3x^2 - 12x - 15$	M1	for two terms correct	
	use of $y = 0$, s.o.1. ft x = 5, -1 c.a.o. x < -1 or $x > 5$ f.t.	A1 A1		Б
				5